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A comparative study has been made of the photosynthetic physiological ecology and carbon isotope
discrimination characteristics for modern-day bryophytes and closely related algal groups. Firstly, the
extent of bryophyte distribution and diversification as compared with more advanced land plant
groups is considered. Secondly, measurements of instantaneous carbon isotope discrimination (D),
photosynthetic CO2 assimilation and electron transport rates were compared during the drying
cycles. The extent of surface diffusion limitation (when wetted), internal conductance and water use
efficiency (WUE) at optimal tissue water content (TWC) were derived for liverworts and a hornwort
from contrasting habitats and with differing degrees of thallus ventilation (as intra-thalline cavities
and internal airspaces). We also explore how the operation of a biophysical carbon-concentrating
mechanism (CCM) tempers isotope discrimination characteristics in two other hornworts, as well as
the green algae Coleochaete orbicularis and Chlamydomonas reinhardtii. The magnitude of D was
compared for each life form over a drying curve and used to derive the surface liquid-phase
conductance (when wetted) and internal conductance (at optimal TWC). The magnitude of external
and internal conductances, and WUE, was higher for ventilated, compared with non-ventilated,
liverworts and hornworts, but the values were similar within each group, suggesting that both factors
have been optimized for each life form. For the hornworts, leakiness of the CCM was highest for
Megaceros vincentianus and C. orbicularis (approx. 30%) and, at 5%, lowest in C. reinhardtii grown
under ambient CO2 concentrations. Finally, evidence for the operation of a CCM in algae and
hornworts is considered in terms of the probable role of the chloroplast pyrenoid, as the origins,
structure and function of this enigmatic organelle are explored during the evolution of land plants.
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1. INTRODUCTION
The bryophytes, represented today by liverworts,
hornworts and mosses (Renzaglia et al. 2007), are the
group of plants thought to be the closest living

representatives of those plants which evolved from the
Mesostigma lineage, via the Coleochaetales and
Charales (Lewis & McCourt 2004; Turmel et al.
2007), to become land plants in the Late Silurian

(Edwards et al. 1998; Graham & Gray 2001). Despite
their diversity being only surpassed by the flowering
plants (Renzaglia et al. 2007), and having contributed

significantly to the global carbon storage in peats and
mires (Clymo & Hayward 1982; Campbell et al. 2000;
Gunnarsson 2005), bryophyte diversification is nor-

mally thought to be limited by life cycle. Thus, the
alternation of generations is dominated by a haploid
gametophyte with indeterminate growth form. The

requirement for liquid water in liverworts and horn-
worts, both to promote reproduction and to maintain
tissue turgor, suggests these to be shade-demanding life

forms (Green & Lange 1994; Marschall & Proctor
tribution of 15 to a Discussion Meeting Issue ‘Photosynthetic
ospheric evolution’.
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2004), which also could have constrained diversifica-
tion (except for mosses, Stoneburner et al. 1991).
Many mosses have become highly tolerant of desicca-
tion, by recourse to a resurrection strategy (Proctor &
Pence 2002; Proctor et al. 2007; Wood 2007). Overall,
none of the three groups have developed a significant
degree of cuticularization, stomata and water transport
tissues, and then only in specialized tissues in certain
groups (e.g. stomata in sporophytes of mosses and
hornworts: Edwards et al. 1998; Renzaglia et al. 2004,
2007; Shaw & Renzaglia 2004).

While there is reasonable evidence for thalloid life
forms in the early fossil record (Wellman et al. 2003;
Graham et al. 2004; Taylor & Haas 2005), and they are
certainly rooted as forerunners of the land plant
revolution from their molecular phylogenies, we have
little in the way of a fossil record to reconstruct their
subsequent diversification. Recently, however, it has
been suggested that some leafy liverworts have indeed
shown significant speciation since the angiosperms
arose (Ahonen et al. 2003; Heinrichs et al. 2007; Wilson
et al. 2007), presumably diversifying in the lee of forest
canopies, just as it had been posited for ferns
(Schneider et al. 2004). It would now be interesting
to compare speciation in liverworts with that in ferns
This journal is q 2008 The Royal Society
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across tropical and temperate biomes, to assess whether

the potential advantages of the haploid life cycle (higher
degree of speciation) was met by a trade-off with

increased susceptibility to lethal mutations, for families

of ferns and bryophytes, which has ultimately con-
strained diversity over palaeohistorical time scales.

The specific focus of this paper, however, is the
physiological implications of the thallus complexity

found in liverwort and hornwort gametophytes. Here,
the progression towards the aspects of modern-day leaf

architecture can be visualized, from groups with

simple, undifferentiated thalli (in the genus Pellia and
most hornworts) to increased ‘ventilation’. This can be

seen by the development of pores and cavities beneath
the outer epidermal layer, lined with chlorenchyma,

as well as increased internal airspaces within tissues

(as exemplified by Conocephalum, Lunularia and
Marchantia—for a detailed morphological study in

Marchantia, see Apostolakos et al. (1982)). In addition,
the relationship between the origins and activity of a

biophysical carbon-concentrating mechanism (CCM)
in some uniplastidic hornworts is a continuing interest

(Griffiths et al. 2004).

Carbon isotope discrimination reflects CCM
activity whether in organic material or in real time,

from instantaneous isotope discrimination during
photosynthetic gas exchange (Smith & Griffiths

1996a,b, 2000). A comparison of gas exchange

characteristics for a morphological progression in
thallus structure showed that the hornwort Phaeoceros
had carbon assimilation rates equivalent to the
ventilated Marchantia under current ambient CO2

concentrations, in contrast to the diffusion-limited
Pellia (Griffiths et al. 2004). Thus, we suggested that

the CCM, if derived from the Coleochaete lineage, was

perhaps unnecessary for land plants colonizing the
aerial environment, when increased thallus ventilation

could lead to a concomitant increase in mesophyll
(internal) conductance to CO2. The increasing compe-

tition for light was a selection pressure that led to

progressive improvements in stomatal conductance
(density) and xylem function (Edwards et al. 1998;

Raven 2003), together with a switch to a sporophyte-
dominated life form, which eventually led to the rise of

all modern-day complex land plants.
The work reported in this paper develops a

systematic analysis of photosynthetic carbon assimila-

tion, carbon isotope discrimination and electron
transport characteristics for contrasting liverwort and

hornwort life forms, from hydric and mesic habitats. By
comparing the rates of carbon gain and water loss

during the drying curves for each life form, we have

determined the optimal tissue water content (TWC)
for photosynthesis and compared the efficiencies of

light use and carbon gain. The measurement of online,
instantaneous carbon isotope discrimination has been

used to derive the surface, liquid-phase limitation when

wetted, and maximal internal conductance for C3
liverworts, or the extent of leakiness for the CCM in

hornworts. In addition, we present data on the photo-
synthetic physiology of representatives of the charo-

phytes and the chlorophytes (Coleochaete orbicularis and
Chlamydomonas reinhardtii ), which both concentrate
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rubisco in a pyrenoid, for comparison with the most
closely related land plant lineages.
2. MATERIAL AND METHODS
(a) Plant material collection

The bryophyte material used in the study was collected

during 2006 and 2007. Liverworts were identified to the

species level using the keys of Schumaker & Váňa (2005).

The collecting sites are given in table 1. Algal strains were

acquired from algal collections.

(b) Growth conditions

All liverwort and hornwort materials used for the gas

exchange, isotopic discrimination and fluorescence measure-

ments were grown at the University of Cambridge Botanic

Garden, in a glasshouse equipped with an automatic misting

unit. Marchantia polymorpha and Pellia epiphylla were kept

outside the direct spray zone.

Cultures were protected from direct sunlight with a plastic

mesh, allowing a maximum of 60 mmol photons mK2 sK1

under full irradiation. Photoperiod and temperature were not

controlled (no artificial light or heat source). Temperature

fluctuated from maximum 288C in July 2006 to minimum

78C in January 2007. Plants were grown individually in small

plastic trays (6!6 cm) on ordinary compost. Under these

conditions, it took an average of one month for Marchantia

gemmae to grow to a full sized thallus of 10 cm2, and three

months at least to regenerate, from a thallus fragment, a

similar sized Phaeoceros rosette.

Chlamydomonaswas grown photoautotrophically in 500 ml

conical glass vials half filled with minimal medium (Surzycki

1971) at 258C under 60 mmol photons mK2 sK1 with moder-

ate shaking (100 r.p.m.) in an orbital incubator shaker

(Gallenkamp, Loughborough, UK). Coleochaete was grown

under similar conditions, using Bold modified basal

freshwater nutrient solution (Sigma, St Louis, USA) instead.

Chlamydomonas cultures were refreshed with a 200 ml

inoculum when reaching mid-logarithmic phase (2!106

cells mlK1); considerably slower growing Coleochaete cultures

were refreshed every two months on average. Algal cells were

collected by centrifugation (4000g for 5 min) and the pellet

was evenly spread on a filter paper to mimic the chlorophyllous

layer of a thallus prior to measurements.

(c) General protocol for laboratory experiments

Experiments were run to simultaneously investigate the

response of isotopic discrimination, net carbon assimilation

and chlorophyll fluorescence to changes in degree of

hydration, over a range of water contents.

Replicate (5!) bryophyte and algal samples were

collected from growth chambers immediately before

measurements. Rhizoids were removed when necessary.

The plant material (10 cm2) was first saturated with distilled

water by complete immersion. Excess external capillary water

was dry blotted, giving a measure of the fully turgid weight

(TW). Tissues were subsequently rewetted to restore the

superficial liquid layer and reweighed to determine fresh

weight (FW), prior to being placed in a gas exchange cuvette.

Each complete drying cycle consisted of successive net

assimilation rate measurement and gas sample collection for

isotopic composition, interrupted at regular intervals to

measure the new FW value, as well as fluorescence.

Depending on the species, a complete drying cycle took

between 4 and 8 hours. Data were finally expressed in

percentage of water content at a given time as related to the

water content at full turgor, according to Slatyer (1967):



Table 1. List of species used in the study, life form, carbon metabolism, and collection site.

species
gametophyte morphologya and expected
C metabolism collection site collector

Marchantiophyta
(liverworts)

Pellia endiviifolia simple thallus, no pores, C3 Sart Tilman, Liège, Belgium (banks of
Blanc Gravier brook)

M. Meyer

Pellia epiphylla simple thallus, no pores, C3 River Frome, Stroud, Glos, UK
(shaded stones by fast flowing water)

H. Griffiths

Conocephalum
conicum

complex thallus, pores, C3 Botanic Garden, Cambridge, UK
(weeds in glasshouses)

M. Meyer

Lunularia
cruciata

complex thallus, pores, C3 Botanic Garden, Cambridge, UK
(weeds outside glasshouses)

M. Meyer

Marchantia
polymorpha

complex thallus, pores, C3 Clare College Old Court, Cambridge,
UK (between cobbled stones in shade)

M. Meyer

Anthocerotophyta
(hornworts)

Megaceros cf.
fuegiensis

simple thallus, no pores, no pyrenoid,
C3-like

Chile B. Goffinet

Megaceros cf.
vincentianus

simple thallus, no pores, pyrenoid mainly
in the younger uniplastidic cells of the
growing thallus margins but not in the
multiplastidic cells elsewhere, CCM?

Alto de Piedra, Santa Fé, Panamá (on
rock, growing with Monoclea
gottscheii, shaded trail along the
border of a patch of forest)

J. C. Villarreal
and E. O.
Rodriguez

Phaeoceros
carolinianus

simple thallus, no pores, uniplastidic cells
with a pyrenoid, CCM

Australian National Botanic Garden,
Canberra, Australia (glasshouse grown
on soil)

D. C. Cargill

Charophyta
Coleochaete

orbicularis
usually unistratose thallus, pyrenoid,

CCM?
UTEX Collection of Algae LB 2651 L. Graham

Chlorophyta
Chlamydomonas

reinhardtii
single cell, pyrenoid, CCM the chlamydomonas center

a Gametophyte morphology follows Ingrouille & Eddie (2006), and serves as a basis to define three distinct groups. First, simple thalloid
bryophytes, with a single or multiple chlorophyllous cell layers on the abaxial and adaxial sides, surrounding a central storage layer, defined as
‘non-ventilated’ thalli, such as the two Pellia spp. and Megaceros fuegiensis. Second, complex thalloid bryophytes with multiple cell layers with
some airspaces, where the upper layer containing pores, opening into air chambers bordered by photosynthetic cells and functionally equivalent
to mesophyll, defined as ‘well-ventilated’ thalli, such as Conocephalum, Lunularia and Marchantia. Third, species with a biophysical CCM and
a pyrenoid, such as hornworts Phaeoceros and M. vincentianus with undifferentiated thalloid tissues and uniplastidic cells, the charophyte
and chlorophyte.
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relative water content (RWC)Z(FWKDW)/(TWKDW),

where DW is the dry weight. Because RWC based on

saturated water content in bryophytes is not physiologically

comparable with values found in vascular plants (Proctor

et al. 1998), in the text we refer to values as TWC. TWC for

blotted thalli was thus arbitrarily set to 100%, which was

generally close to the optimal TWC, at which net assimila-

tion, carbon isotope discrimination and electron transport

rate (ETR) were maximal.
(d) Gas exchange system

An open gas exchange system was designed using a modified

LD2/3 Leaf-Disk Oxygen Electrode Chamber (Hansatech

Instruments Ltd, King’s Lynn, UK) as the cuvette. Uniform

illumination was provided through a LH36/2R 36 red LED

Array light housing (Hansatech Instruments Ltd, King’s

Lynn, UK). The photosynthetic photon flux density inside

the chamber was monitored using a quantum sensor (model

LI-189, Li-Cor, Lincoln, USA). A perforated disc (washer)

placed on the floor of the chamber allowed for easy removal of

the material in between weighing. The light intensity for each

drying cycle was set at saturating intensity, determined

beforehand (see §2g). Temperature control was achieved

with a circulating water bath (FC15/FH15, Grant Instru-

ments Cambridge Ltd, Cambridge, UK) through an upper

and lower water jacket of the cuvette, and set at 208C.
Phil. Trans. R. Soc. B (2008)
Compressed air from a high-pressure cylinder was supplied

at a constant flow rate using a mass flow meter and

controller (5800 Series, Brooks Instruments BV, Veenendaal,

The Netherlands). CO2 concentration of the air exiting the

chamber was measured using an infrared gas analyser (ADC

225 MkIII, ADC BioScientific Ltd, Hoddesdon, UK) and

recorded on a data logger. The net photosynthetic rate was

calculated as the rate of depletion of CO2 per square metre

of plant material (based on the 10 cm2 sample of tissue)

per second.

After initial placement into the gas chamber, the plant

material was given approximately 30 min to equilibrate to the

chamber conditions and reach steady-state gas exchange.

Optimal water use efficiency (WUE) was determined

as (mol CO2 . mol H2OK1 . 10K3) from the FW loss of the

measured tissue, over the intervals of maximal CO2

assimilation, converted to water loss on an area basis.
(e) Online carbon isotope discrimination

CO2 samples were collected downstream of the cuvette, and

trapped into a vacuum line, which included the provision for

the elimination of water vapour contaminants prior to mass

spectrometry. The isotopic composition was measured using

a VG Sira mass spectrometer (modified by Pro-Vac Services

Ltd, Crewe, UK).
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In an open gas exchange system, discrimination during

photosynthesis becomes the difference between the isotopic

composition of the air passing over a plant (de, ‘entering’)

and the air collected afterwards (do, ‘out’). From the

measured concentrations of CO2 entering (Ce) and leaving

(Co) a leaf chamber, it is therefore possible to calculate D as

(Evans et al. 1986)

DZ
xðdeK doÞ

1000CdoKxðdoK deÞ
; ð2:1Þ

where

xZ
Ce

CeKCo

: ð2:2Þ

(f ) Calculating conductances and leakage from online

carbon isotope discrimination

Carbon isotope discrimination during photosynthesis by C3

plants was derived from the expressions of Farquhar et al.

(1989), and developed by Seibt et al. (2008) as

DZ ab

CaKCs

Ca

Cam

CsKCc

Ca

Cb
Cc

Ca

Kf
G�

Ca

; ð2:3Þ

where Ca, Cs and Cc are the CO2 mole fractions of ambient

air, thallus surface and carboxylation sites, respectively; ab is

the fractionation (2.9‰) during CO2 diffusion through the

leaf boundary layer; am is the fractionation during the internal

(mesophyll) CO2 transfer (1.8‰); b is the fractionation

during carboxylation (27‰); f is the fractionation during

photorespiration (approx. 8‰); and G� is the CO2 compen-

sation point in the absence of dark respiration. Equation (2.3)

describes the ‘optimal’ situation, i.e. the thallus is fully

hydrated (TWCz100%) but without additional water on its

surface. To account for the effect of an external layer of liquid

water (TWCO100%), Cs is replaced by Cx, the CO2 mole

fraction at the surface of the external liquid layer

DZ ab

CaKCx

Ca

Cam

CxKCc

Ca

Cb
Cc

Ca

Kf
G�

Ca

; ð2:4Þ

extending the liquid diffusion term to include the external

water layer between ambient air and the thallus surface.

Based on the measured boundary layer conductance and net

CO2 assimilation (A), we calculated Cc from equation (2.3),

and using Fick’s law, AZgl (CsKCc), determined the total

liquid conductance, gl. For each experiment, gl can be

partitioned into internal and external liquid conductances

(1/glZ1/gintC1/gliq ). At optimal TWC (approx. 100%), i.e.

without external water, gl represents solely the internal

(mesophyll) conductance, gint. At TWCO100%, the external

liquid conductance, gliq, was then calculated from gl and gint.

For the derivation of leakiness from the CCM, the

approach of Berry (1989) was used,

DZ am

F1KF3

F1

Cb
F3

F1

; ð2:5Þ

where F1 is the carbon flux into; F3 is the flux leaking out of

the cells; and am combines the discrimination during

dissolution (1.1‰) of CO2 and liquid diffusion (0.7‰),

assuming that CO2 is the substrate of photosynthesis.

The ratio of F3/F1 represents the ‘leakiness’ of the

pyrenoid–CCM system, L, so that equation (2.5) can also

be written as

DZ am C ðbK amÞL: ð2:6Þ
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(g) Fluorescence

Chlorophyll fluorescence has been widely used as a rapid and

non-invasive method to infer plant photosynthetic per-

formance (Maxwell & Johnson 2000). In vivo chlorophyll a

fluorescence was measured at intervals during gas exchange,

using a miniaturized pulse amplitude-modulated fluorometer

(Mini-PAM, H. Walz, Effeltrich, Germany). The terminology

for fluorescence parameters follows that of Maxwell &

Johnson (2000). First, instant light response curves of relative

ETR through photosystem II were constructed for each plant

material, using the scripting facility of the Mini-PAM, to

determine saturating light levels used in the gas exchange

system. Ft and Fm 0 were recorded for the calculation of FPSII

and ETR. FPSII, the quantum yield of PSII, measures the

proportion of absorbed energy used in photochemistry, and

was calculated as FPSIIZ(Fm0KFt)/Fm0. ETR was calculated

as ETRZFPSII!PAR!0.42, where PAR is the quantum

flux density of the photosynthetically active radiation and

0.42 is the average fraction of incident PAR absorbed by PSII.
3. RESULTS
For the first group with non-ventilated thalli (for a
definition see the legend to table 1), data are presented
for carbon isotope discrimination (D), net CO2

assimilation (A) and ETR during a drying cycle for
Pellia endiviifolia, P. epiphylla and Megaceros fuegiensis
(figure 1). P. endiviifolia is normally found in more
consistently wetted habitats even tolerating immersion,
while P. epiphylla is comparatively more desiccation-
tolerant. Overall, the patterns of photosynthesis support
our representation around an optimal TWC, with
diffusional limitations occurring at higher water con-
tents due to the surface liquid layer (above optimal
TWC) affectingD,A and ETR. Within each species, the
responses were modified; thus, for the desiccation
intolerant P. endiviifolia, the transition from saturated
(mean value, 120%) to optimal operating TWC (mean
value, 94%) led to a sharp increase in the mean D values
from 8.3 to 12.4‰, while mean A also increased
from 1.90 to 2.28 mmol CO2 mK2 sK1 (figure 1a,b).
ETR tended to show a similar response, although the
proportional limitation at high water content was lower
(mean values 30–32 mmol eq mK2 sK1; figure 1c). A
showed a surprisingly broad operating range across
mean TWC (with a maximum at 82–94%) as compared
with narrower optimal TWC for D (94%) and ETR
showed a wider optimal operating range at higher water
contents (mean values, 94–120% TWC).

The more desiccation-tolerant P. epiphylla
(figure 1d– f ) showed optimal photosynthetic charac-
teristics across a wider operating range of mean TWC
values (88–142%), although the capacities for each
parameter (D, A and ETR) were generally lower than
those for P. endiviifolia (figure 1a–c). The hornwort
M. fuegiensis showed a much narrower operating range
of maximal capacities for D, A and ETR (figure 1g–i )
than the equivalent liverwort life forms at a mean TWC
of 100%. For the hornwort, the maximum D value
occurred at a lower TWC than maximum assimilation
or internal conductance (figure 1g,h; table 2). The
external liquid-phase conductance when fully wetted
was generally lower for the hornwort than the two
liverworts, although gint were similar for all three life
forms (table 2).
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Figure 1. Carbon isotope discrimination (D), net CO2 assimilation (A) and ETR during a drying cycle for Pellia endivifolia (a–c),
P. epiphylla (d– f ) and M. fuegiensis (g–i ). Each value is the mean of five independent determinations during a drying curve, with
the optimal TWC first being determined by blotting surface water and set to 100% before rewetting tissue to derive,
progressively, surface liquid-phase limitation, optimal thallus operating capacity and subsequent biochemical limitation.

Table 2. Diffusion limitations, operating efficiencies and water use characteristics for contrasting bryophyte groups, and allied
algal lineages. (Internal conductance (gint , column 1) and operating efficiency (leakiness) of biophysical (2), and minimum
surface liquid-phase conductance (gliq, 3), were derived from online discrimination data. Optimal WUE (4) was derived from
fresh weight loss at maximal CO2 assimilation, converted to water loss on an area basis. Column 5 shows the mean tissue organic
carbon isotope discrimination measured for three replicates.)

gint (mmol mK2 sK1) CCM leakage (%) gliq (mmol mK2 sK1)
WUE (mol CO2 mol
H2OK1.10K3) Dorg (‰)

P. endiviifolia 10.8 — 23.6 0.66 21.8
P. epiphylla 9.4 — 29.2 0.72 28.5
M. fuegiensis 9.3 — 12.2 0.54 20.1
C. conicum 39.1 — 31.9 1.56 24.1
L. cruciata 38.0 — 40.2 1.51 23.3
M. polymorpha 42.3 — 37.0 2.53 20.2
M. vincentianus — 30.4 30.9 0.53 13.3
P. carolinianus — 17.0 27.5 1.02 14.0
C. orbicularis — 31.6 18.6 0.28 11.3
C. reinhardtii — 5.5 28.2 0.79 n/a
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In figure 2, we present the photosynthetic charac-
teristics of the second group (see the legend to
table 1), liverworts with a range of habitat preferences
and the degree of thallus ventilation (both in terms of
cavities and intracellular airspaces). Conocephalum
conicum and Lunularia cruciata show a similar broad
operating range of D, A and ETR across mean
TWCs ranging from 70 to 125% TWC, whereas
Phil. Trans. R. Soc. B (2008)
M. polymorpha has a much narrower optimal
hydration (98% TWC). ETR rates of M. polymorpha
at well-watered TWC were generally much higher
(maximum ETR of 45 versus 22 and 38 for
C. conicum and L. cruciata, respectively), but declined
rapidly at lower TWC values, indicating a higher
susceptibility of the light harvesting apparatus to
water deficits in this liverwort.
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Figure 2. Carbon isotope discrimination (D), net CO2 assimilation (A) and ETR during a drying cycle for C. conicum (a–c),
L. cruciata (d– f ) and M. polymorpha (g–i ). Experimental details are the same as given in legend to figure 1.
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In figure 3, we compare the assimilation charac-

teristics of organisms with CCMs across the drying

cycle, which also tended to show unimodal responses

with maximal values at optimal TWCs. D was lower in

Phaeoceros carolinianus than the other bryophytes

(figure 3a), with a maximum of 6.1‰ at 89% TWC;

while A rates showed a range similar to the bryophytes

with well-ventilated thalli (figure 3b), ETR was much

higher (figure 3c: maximum rate of 50 mmol eq mK2 sK1).

D was highest in C. orbicularis (figure 3d ) and lowest in

C. reinhardtii (figure 3g), althoughA and ETR were low in

both algae (albeit measured as a cell layer on a filter paper

insert in the leaf cuvette). Considering the relatively

constant A and ETR across the drying curve for

C. orbicularis (figure 3e, f ) there was a wide range of D

values expressed, which were sensitive to both liquid-

phase diffusion limitation and suboptimal water contents

(figure 3d ).

In order to summarize the key physiological

parameters for each of these contrasting life forms,

we plotted the isotope discrimination and optimal

assimilation characteristics (figure 4) and tabulated the

key derived parameters (internal conductance/CCM

leakiness, external liquid-phase diffusion limitation and

WUE) with organic carbon isotopic composition

(table 2). The higher assimilation rates and isotope

discrimination are clearly associated with the ventilated

liverworts, as compared with the non-ventilated
Phil. Trans. R. Soc. B (2008)
liverworts and hornworts (figure 4). For those organ-

isms with a CCM (with additional data included for the

pyrenoid-containing tissue from Megaceros vincentia-
nus), assimilation rates were more variable. The optimal

assimilation rate for the hornwort P. carolinianus was

equivalent to the ventilated liverworts, consistent with

the observations made by Griffiths et al. (2004), but

lower than the non-pyrenoidal M. fuegiensis (figure 4).

When tissue was fully wetted, a surficial layer of

water provided an additional diffusional limitation to

CO2 uptake, with lower values of online D found for all

species included in our study (figures 1–3). In

organisms without a CCM, the internal conductance

is found at the optimal TWC (using maximal Dopt

values for each organism from figure 4). The drawdown

of external CO2 mole fraction (when ambient CO2, Ca

equals that at the tissue surface, Cs) to that at the

carboxylation site (Cc) then represents only the

mesophyll or internal conductance (gint; table 2). For

fully wetted tissues, the lower Dwet reflects the

additional drawdown of CO2 concentration from

ambient air, through the surficial liquid layer, through

mesophyll tissue, to the sites of carboxylation. Thus,

the online discrimination measurements could be

used to calculate the minimal liquid-phase conduc-

tance when wetted, from the difference between fully

wetted (Dwet) and optimal TWC (Dopt) discrimination

characteristics (table 2, for details, see §2). For
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Figure 3. Carbon isotope discrimination (D), net CO2 assimilation (A) and ETR during a drying cycle for P. carolinianus (a–c),
C. orbicularis (d– f ) and C. reinhardtii (g–i ). Experimental details are the same as given in legend to figure 1.
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Figure 4. Comparative summary of carbon isotope discrimination (D, bar chart), net CO2 assimilation (filled circles) and ETR
(filled triangles) at optimal TWC for contrasting bryophyte life forms. Data summarized from figures 1–3, collated to show non-
ventilated liverwort and hornwort thalli (hatched bars, Pn, Pellia endiviifolia; Pp, Pellia epiphylla; Mf, Megaceros fuegiensis),
ventilated liverworts (blank bars, Cc, Conocephalum conicum; Lc, Lunularia cruciata; Mp, Marchantia polymorpha), and hornworts
and algae with a CCM (grey bars, Mv, Megaceros vincentianus; Pc, Phaeoceros carolinianus; Co, Coleochaete orbicularis;
Cr, Chlamydomonas reinhardtii ).
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organisms with pyrenoids, Dopt was used to calculate
the extent of leakage from the CCM in hornworts and
algae (table 2).

Firstly, gint was much lower for non-ventilated
bryophyte thalli than for more complex, ventilated
tissues (9.3–10.8 mmol mK2 sK1 for simple thalli, as
compared with 38.0–42.3 mmol mK2 sK1 for ventilated
Phil. Trans. R. Soc. B (2008)
thalli; table 2). Secondly, the mean gliq for simple,
non-ventilated thalli (hornworts and liverworts:
24.7 mmol mK2 sK1) was lower than that for ventilated
liverwort thalli (36.4 mmol mK2 sK1), suggesting that,
when wetted with a layer of external water, the former
are more limited by diffusion than the latter. As one
would predict from the lower online Dopt values for
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certain of the tissues with a CCM (namelyP. carolinianus
and C. reinhardtii ), leakage was lowest, or the efficiency
of the CCM highest for these organisms (table 2).
However, there was a difference in the efficiency of
the two hornwort CCMs, with P. carolinianus nearly
twice as efficient as pyrenoid-containing multiplastidic
tissues from M. vincentianus (leakage 17 versus 30%,
respectively, table 2).

WUE, calculated as an integral of instantaneous
CO2 assimilation and water loss rates per unit thallus
area, also showed interesting characteristics according
to bryophyte functional group (table 2). Overall, the
simple, non-ventilated thalli (liverworts and horn-
worts) had a lower mean WUE than the more complex,
ventilated liverwort thalli (0.69, as opposed to 1.87,
molCO2.mol H2OK1.10K3). Finally, the organic car-
bon isotope ratio composition was calculated as Dorg,
assuming a source CO2 composition of K8‰, and
while there were no statistical differences between the
ventilated and non-ventilated thalli, a consistent pattern
of low D was associated with the operation of a CCM
in both hornworts and C. orbicularis (table 2).
4. DISCUSSION
(a) Co-limitation of CO2 uptake and water loss

for bryophyte life forms

The lower overall conductances (gliq, liquid phase and,
even more so gint, mesophyll) for the non-ventilated
thalli were consistent with gas exchange characteristics
showing diffusion limitation (Slavı́k 1965; Proctor
1980; Green & Lange 1994; Williams & Flanagan
1996; Rice et al. 2001; Griffiths et al. 2004; Fletcher
et al. 2005). By contrast, resistance to CO2 uptake was
significantly lower for the ventilated thalli, suggesting
that surface morphological features, as well as internal
airspaces, and possibly biochemical differences, all help
to maximize CO2 assimilation and support the notion
of an evolutionary progression from simple to complex
thalli. The possession of a CCM was generally
associated with a higher external conductance in
hornworts (perhaps reflecting the overall CCM
capacity to increase the diffusion gradient into the
non-ventilated thalli). However, the effectiveness of
the CCM, in terms of the lowest degree of leakage,
was most pronounced in C. reinhardtii, followed by
P. carolinianus, with the latter requiring the highest
ETR in support of CCM. These data are again
consistent with the role of the CCM in non-ventilated
hornworts as providing equivalence, in terms of carbon
gain, to that of ventilated thalli (Hanson et al. 2002;
Griffiths et al. 2004). However, the CCM rates would
be a disadvantage in terms of the energetic demand in a
low light environment, again leading to the conclusion
that there was possibly little long-term physiological
advantage in retaining a CCM for the early evolution of
land plants in a high CO2 world in shaded habitats
(Griffiths et al. 2004; Raven et al. 2008).

In terms of the integrated measures of performance,
we note that instantaneous WUE distinguished simple,
non-ventilated thalli, and their more advanced
counterparts, with both higher diffusion limitation
and lower WUE associated with the undifferentiated
thalli. Additionally, the highest overall WUE found for
Phil. Trans. R. Soc. B (2008)
M. polymorpha was also consistent with such a narrow
range of TWC to support maximal assimilation
and ETR (figure 2; see discussion below; Proctor &
Tuba 2002).

Organic carbon isotope discrimination values were a
good indicator of CCM occurrence, but not thallus or
liquid-phase diffusion limitation, perhaps due to the
variable proportion of respiratory CO2 derived from
the substrate under natural growth conditions, which
was not measured in this study. This would affect both
the source signal (leading to higher apparent discrimi-
nation when source CO2 assumed to be K8‰) with
higher ambient concentrations providing a bonus for
the improved diffusive supply (DeLucia et al. 2003).
Finally, the general decrease in carbon isotope
discrimination at low TWCs for all bryophytes is
consistent with ‘biochemical limitation’ sensu Rice &
Giles (1996; Rice 2000; Hamerlynck et al. 2002),
which could result from a declining rubisco activity
and ETR. Alternatively, the low D could result from
reduced CO2 supply, perhaps due to a loss of turgor, or
declining aquaporin activity (Flexas et al. 2007a,b) in
the desiccating thalli.

(b) Isotope discrimination and bryophyte habitat

preference then and now

Some species showed an extremely narrow range of
optimal water contents when isotope discrimination
and electron transport were maximal (P. endiviifolia,
M. fuegiensis, M. polymorpha). By contrast, P. epiphylla,
and the ‘ventilated’ thalli of Conocephalum and
Lunularia, were more tolerant to desiccation, in that
the photosynthetic characteristics (A, D, ETR) were
maintained across a much wider range of TWC
values. These responses are consistent with the
observed habitat preferences for the two Pellia species
( J. Duckett 2007, personal communication), while for
Marchantia, the high WUE may mitigate such a
limitation to distribution. This perhaps reduces the
rate of water loss per unit carbon fixed to maximize the
period of carbon gain, as compared with those other
ventilated liverworts (C. conicum, L. cruciata), adapted
to more xeric habitats.

Overall, the systematic losses in the operating
efficiency of carbon gain (limited by low gint and gliq,
as internal and external conductances) and evaporative
rate in simple, thalloid bryophytes can be partially
offset by the operation of a CCM. The energetic
demand of the carbon pump may limit activity at low
light and lead to high rates of leakage, or alternatively
require an inherently high ETR to drive the CCM in
hornworts or C. orbicularis. However, for the first time,
we have quantified both the physiological operations of
a CCM in Coleochaete and show that they operate closer
to the operating efficiencies of hornworts rather than in
Chlamydomonas. Ultimately, however, our limited
study suggests that the evolutionary progression of
increased ventilation in liverwort life forms, associated
with improved WUE, seems to have made a CCM
redundant in all terrestrial plant lineages (with the
except of most hornworts) under what was then a high
CO2 world.

Meanwhile, the isotopic signals in bryophytes
(Rundel et al. 1979; Teeri 1981; Proctor et al. 1992)
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and fossilized tissues (Fletcher et al. 2004, 2005;
Loader et al. 2007) seem to reflect CO2 concentrations
for growth in a palaeohistorical context. It seems likely
that the emergence of a land-based biota increasingly
reliant on stomata to control gaseous fluxes of water
and CO2 (Edwards et al. 1998; Woodward 1998; Raven
2002) would have overshadowed the thalloid bryo-
phytes in leaving a marker of their discrimination
processes on the atmospheric CO2 signal. Meanwhile,
the increasing development of soil organic carbon
reserves would have led to the efflux of CO2 from soils
tending to provide a respiratory bonus to the thalloid
bryophytes appressed to their substrate, and shifted to a
(probably) more 13C-depleted source CO2 to which
they would have been predominantly exposed (see
discussion above). At any event, these factors compli-
cate the simple interpretation of bryophyte organic
residues as markers of atmospheric CO2 concentration
(Fletcher et al. 2006).

(c) Bryophyte diversity in form and function:

possibilities and practicalities for

land plant evolution

The hornworts represent an enigmatic group for which
the phylogenetic relationship to other bryophytes, and
the land plant progression, is still a matter of debate,
primarily between proponents of a hornwort-basal
versus liverwort-basal hypotheses (Qiu et al. 2006,
2007; Renzaglia et al. 2007). The diffusive limitations
(external, when wetted, and internal, when likely to
desiccate) of equivalent simple thalloid life forms
(table 2), is consistent with a basal stature for such
morphologies, particularly as a single chloroplast per
cell in hornworts is also liable to decrease gint. However,
bryophytes with highly developed internal airspaces
and pores leading to chambers, containing chloren-
chyma protected from direct evaporative demands, are
at least as efficient (in terms of carbon gain) as a simple
thallus with a CCM, while their water use (as WUE) is
considerably higher. As regards the land plant pro-
gression, despite hornwort sporophytes developing
stomata (which may function analogously to those in
moss sporophytes to aid the desiccation and spore
dispersal: Renzaglia et al. 2007), there have been no
other land plants to develop such a CCM prior to C4 or
CAM pathways.

The origins and mechanistic functioning of the
chloroplast pyrenoid, an organelle long associated with
the algal CCM (and analogous to the cyanobacterial
carboxysome, Badger et al. (1998)), is therefore found
only in selected hornworts, of all land plant species.
Without a more detailed genetic, molecular and
physiological comparison of Coleochaete and hornwort
pyrenoids, we can only speculate as to their origins
and derivation (perhaps both from the Mesostigma
lineage or from an even earlier common ancestor?
Raven 2003; Burey et al. 2005). However, from a
functional perspective, it is evident that the efficiency of
the hornwort pyrenoid spans that of green algae
(Chlamydomonas) and Charophyceae (Coleochaete), as
seen in the data presented in figure 4 and table 2. While
we lack a detailed study of pyrenoidality or other CCM
proxy (carbon isotope composition) for hornworts
(Smith & Griffiths 1996a,b; Griffiths et al. 2004),
Phil. Trans. R. Soc. B (2008)
a most recent phylogenetic re-evaluation (Duff et al.
2007) is still consistent with the contention that
pyrenoid and uniplastidicity are ancestral characters.
The loss of a CCM in more advanced, multiplastidic
thalli seems compelling, although the possibility of the
pyrenoid being lost and regained (sensu Nozaki et al.
(2002) for Chlamydomonas and Chloromonas) may also
hold for some of the hornwort groups ( J. Duckett
2007, personal communication; Duff et al. 2007).

Physiologically, it is from here a short step to the
form, function and molecular basis to our under-
standing (or rather the lack of it!) for the pyrenoid in
Chlamydomonas and other algal lineages. While there are
undoubtedly some CCM systems which function in the
absence of a pyrenoid (Raven 1997a,b; Raven et al.
2008), we contend that the majority of the significant
aquatic global carbon fixation mediated by non-
cyanobacterial microbes (Raven et al. 2008) is mediated
by a pyrenoid-based CCM. To date, there are no
candidate genes, proteins or specific structures
which are thought to comprise a pyrenoid, other
than the associated starch sheath (Izumo et al. 2007),
and internal pyrenoid complement of rubisco
(Lacoste-Royal & Gibbs 1987; Vaughn et al. 1990;
Borkhsenious et al. 1998), rubisco activase (McKay
et al. 1991), nitrate reductase (Okabe & Okada 1990),
Calvin cycle enzymes, photosystem I and lumenal
carbonic anhydrase-enriched trans-thylakoid lamellae
(Villarejo et al. 1998; Moroney & Ynalvez 2007).
While we are currently undertaking work on a
pyrenoid proteome and also investigating the relation-
ship between rubisco structure and function in the
chloroplast pyrenoid, our closest guess to the normal
pyrenoid structure is some type of aggregation
mechanism associated with rubisco, which may be
related either to rubisco holoenzyme amino acid
residue interactions or some additional plastoskeleton
structures. There is evidence for the existence of
complex filamentous networks in bacteria (Carballido-
López & Errington 2003), which could have a
counterpart in the endosymbiotically inherited
plastids or during cell division. At any event, solving
the riddle of the pyrenoid structure and operation for
installation in C3 plants may provide a more tractable
alternative to the introduction of C4 biochemistry into
certain crop species.

Finally, it has been postulated that hornworts may
have diversified in the lee of the angiosperms
(M. Chase 2002, personal communication) in a
manner similar to that postulated for the pteridophytes
(Schneider et al. 2004). More recently, the diversifi-
cation of liverworts (Ahonen et al. 2003) and
specifically leafy liverworts, has been considered
(Heinrichs et al. 2007), but a group with earlier origins
would provide more compelling evidence. Ultimately,
it seems that the bryophytes should not be considered
as evolutionary relicts, when such highly productive
and diverse life forms dominate carbon sequestration
over such a large area of the globe (Clymo & Hayward
1982; Campbell et al. 2000; Gunnarsson 2005).

We may therefore not necessarily invoke the
alternation of generations, and limitations of the
haploid vegetative phase for growth, in having con-
strained bryophyte diversification, or the global
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productivity. However, the fossil record suggests a slow
rate of bryophyte evolution and hence the extent of
sexual recombination in bryophytes is low and the
mutations in the haploid state are more likely to be
lethal. Ultimately, bryophytes seem to represent a
contradiction in terms: dismissed in textbooks as being
‘primitive’, their physiological progression (develop-
ment of a land-based CCM, origins of stomata and
adoption of internal mesophyll ventilation), together
with their observed global diversity and productivity,
belies such a definition. The interplay between diffusive
or carboxylation limitations revealed in this paper
support the anatomical and molecular progression.
Further investigations into the molecular correlates of
bryophyte physiology and diversification may hold
additional insights for a number of key processes
determining the evolution and success of higher plants,
both in the past and for the future.
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